St Andrew's C of E Primary School

Mathematics
 Fractions, decimals and percentages Policy

With faith, hope and love we can achieve greater things.

DEVELOPING UNDERSTANDING OF FRACTIONS, DECIMALS AND PERCENTAGES			
Year	NC Objectives	Examples	Models and Images
EYFS	- Share objects, shapes and count how many are in each group (early division) - Solve problems involving halving and sharing Key Language half double equal parts groups sharing bigger smaller (EXC greater than < less than >)	Fractions Adults to use fraction vocabulary of halves, quarters, thirds when describing the number of groups. Misconception "He's got a bigger half." Adults to ensure children understand that half means two equal groups. Misconception "You can't half one object." Adults to explain that 1 apple can be halved, a piece of paper can be halved.	What is half of 8 ? Half of 8 is 4 . What is double 4? Will these number be getting bigger or smaller? Show me this. We need to share the strawberries equally between 4 people. How many strawberries will each person get? (Sharing) How many children will get strawberries? (Grouping)

Decimals and percentages

Links to place value and halving. Language to be used, but not explicitly taught.

Children to have a solid understanding of place value, knowing that 5 is half of 10 , linking to decimals later. Adults in the room to acknowledge numbers that are less 1.
Discussion of money, if $£ 1$ is the whole then there must be numbers before this. Discuss of $£ 1=100$ p.

We got 100% on our phonics game that means we got them all right. Today we got 50% right that means we got half right.

What is half of this amount?

- Recognise, find and name a half as one of two equal parts of an object, shape or quantity
- Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity
- Begin to learn sharing and grouping into equal parts.
- Begin to recognise that the larger the denominator the smaller the fraction (unit

Children use their knowledge of fractions of shape to find fractions of quantities.
 Misconception
 Only a shape can be halved (1 object). Children unable to see a number greater than 1 as being 'the whole'.

Children should be give practical apparatus to find halves and quarters of quantities within 20.

Record work pictorially, developing this into formal arrays. The bar model is a great way of showing the whole and equal parts.
STEM: The whole is split into 2 equal parts. Each part is half.

What does half mean? Can you show me? What would the number sentence be? What do you notice about the factors?

$$
4+4=8
$$

What does the 4 represent?

```
What does the 8 represent?
Sharing - I have 12 sweets and 3 friends. How many sweets does each person have?
```



```
Grouping - I have 20 cookies and I put 5 in a bag.
How many bags will I have?
```


fractions or same numerator).

$\frac{1}{2}+\frac{1}{2}=2 / 2=1$

Misconception
The bigger the denominator the bigger the fraction.

Using the Cuisenaire find a half of the dark green. (reinforce equal parts)

Can you cut the pizza in half?

Shade each whole shape to show half in four different ways.

An array can be used
to demonstrate
sharing.

What fraction is this?
What is the most
peculiar way you could make this fraction?

If $3 / 100$ people in school horse ride, that is the same as 3% of people horse riding. What
percent would it be if 7
children did?
Links to fractions

1
Key Language
Half, double, half, quarters, thirds, unit fraction, equivalent, equal, parts, grouping, sharing, greater than, less than, whole, denominator, numerator.

They relate this to find fractions of a length e.g. $2 / 4$ of $1 \mathrm{~m}=$

Children need to relate

 finding a quarter to halving and halving again.
Misconception

Using arrays to find $1 / 4$, Not linking to halving and halving again.

Jayne says that the shaded part of the whole square below does not show a half because there are three pieces, not two.
Do you agree?
Explain your reasoning.

Find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths	Misconception 2	$\frac{2}{8}+\frac{5}{16}=\frac{7}{24}$	

and write decimal
numbers as fractions

- Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction.
- Add and subtract fractions with the same denominator and denominators that are multiples of the same number recognise mixed numbers and improper fractions and convert from one form to the
(e.g. $0.71=/ \quad 71$).

100

This could represent 100 or 1.

Misconception.

Children not making links between fractions, decimal and percentages. E.g. $2 / 5=$ 40\%

Misconception.

Children not making links between prior knowledge.
e.g. 34% of 60 . Can I find 10%, therefore can I find 1%. How will this help me ?

Suggest another way to colour the grid to show clearly each fraction that is shaded. What fraction of the grid is shaded in total?
How many different ways can you express the fraction of the grid that is shaded?

How could I show this as a fraction? Decimal? Percentage?

True or false?
$1.5 \mathrm{~kg}+600 \mathrm{~g}=2.1 \mathrm{~kg}+300 \mathrm{~g}$
$32 \mathrm{~cm}+1.05 \mathrm{~m}=150 \mathrm{~cm}-0.13 \mathrm{~m}$
$\frac{3}{4} \ell+0.05 \ell=$ half of 1.6ℓ
Explain your reasoning.
Graham is serving pizzas at a party. Each person is given $\frac{3}{4}$ of a pizza. Graham has six pizzas.
How many people can he serve? Draw on the pizzas to show your thinking.

Write your answer as a multiplication sentence.

Each bar of toffee is the same. On Monday, Sam ate the amount of toffee shown shaded in A. On Tuesday, Sam ate the amount of toffee shown shaded in B.

Sam says he ate $\frac{7}{8}$ of a bar of toffee.
Jo says Sam ate $\frac{7}{16}$ of the toffee.
Explain why Sam and Jo are both correct.

other and write mathematical statements >1 as a mixed number - Multiply proper fractions and mixed numbers by whole	Misconception. Finding a common multiple to compare these numbers rather than thinking about what the numbers represent. $\frac{3}{8} \quad \frac{3}{7}$	

Y6	- Compare and order fractions, including fractions >1 - Identify the value of each digit in numbers given to three decimal places - Solve problems which require answers to be rounded to specified degrees of accuracy - use common factors to simplify fractions; use common multiples to express fractions in the same denomination associate a fraction with division and calculate decimal fraction equivalents - recall and use equivalences between simple fractions, including in different contexts. - add and subtract fractions with different	(e.g. 0.375) for a simple 3 fraction (e.g. /) 8 $3 \div 8$ using bus stop method. Turn them into equivalent fractions with common denominators. Then add and subtract as applicable. Find simplest form where possible. $\begin{array}{ccc} 1 & 1 & 1 \\ (e . g . / \times /=/) \\ 4 & 2 & 8 \end{array}$ $\frac{3}{4} \times 8 / 9=24 / 36$. Then simplify to $2 / 3$ by finding a common denominator. 3.25×4 What is an efficient way of solving

denominators and mixed numbers, using the concept of equivalent fractions

- multiply simple pairs of proper fractions, writing the answer in its simplest form [for example,
$\frac{1}{4} \times \frac{1}{2}=1 / 8$]
- multiply one-digit numbers with up to two decimal places
by whole numbers
divide proper fractions by whole numbers [for example,
$1 / 3 \div 2=1 / 6$]
- multiply one-digit numbers with up to two decimal places by whole numbers x and \div numbers by 10,100 and 1000 up to three decimal places
- identify the value of each digit to three decimal
this without using short multiplication?

Misconception.

Children not making links between prior knowledge.
e.g. 34% of 60 . Can I find 10%, therefore can I find 1%. How will this help me?

 (8)

places associate a fraction
with division and calculate
decimal fraction
equivalents

Misconception

$0.02=20 \%$
$3 / 14+3 / 14=6 / 28$.
Converting between decimals, fractions and percentages.

Explain your reasoning.

Write these as a
percentage \rightarrow

Which is the odd one out?
$\frac{2}{5}, 0.4, \frac{4}{10}, \frac{3}{6}, \frac{6}{15}$
Explain your choice.
Put the following numbers into groups:
$\frac{3}{4}, \frac{3}{2}, 0.5,1 \cdot 25, \frac{3}{8}, 0 \cdot 125$.
Explain your choices.

What's the same, and what's different about these number statements?
Double one third of 15
One third of 30
2×5
$15 \times 2 \div 3$
$15 \div 3 \times 2$
$15 \times \frac{2}{3}$ In each number sentence, replace the boxes $\square{ }^{30}=\frac{45}{\square}$
$4, \frac{3}{2}, 8$
\qquad
$\stackrel{\square}{3}=\stackrel{-1}{12}$

In each number sentence, replace the boxes with different whol numbers less
$1.2 \div 0.2=$
How many 0.2's are in 1.2 ?

5 groups of $0.2+1$ group of $0.2=6$ groups of 0.2 $1.2+0.2=6$

